Криптография: Как считает компьютер. Двоичная система Идея использования двоичной системы счисления

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Введение

Владея развитой компьютерной теорией, программисты иногда забывают о той роли, которую сыграли системы счисления в истории компьютеров. Ведь первые счетные приборы (абаки и арифмометры), прообразы современных компьютеров, начали создаваться задолго до возникновения алгебры логики, теории алгоритмов - и главную роль при их создании сыграли именно системы счисления. Об этом следует помнить, прогнозируя дальнейшее развитие компьютерной техники.

1. Происхождение и история развития систем счисления

На ранних ступенях развития общества люди почти не умели считать. У первобытных народов не существовало развитой системы счисления. Еще в 19 веке у многих племен Австралии и Полинезии было только два числительных: один и два; сочетания их образовывали числа: 3 - два - один, 4 - два - два, 5 - два - два - один и 6 - два - два - два. Обо всех числах, больших 6, говорили «много», не индивидуализируя их. Это был еще не счет, а лишь его зародыш.

Впоследствии способность различать друг от друга небольшие совокупности развивалась; возникли слова для обозначений понятий «четыре», «пять», «шесть», «семь». Последнее слово длительное время обозначало также неопределенно большое количество. Наши пословицы сохранили память об этой эпохе («семь раз отмерь - один раз отрежь», «у семи нянек дитя без глазу», «семь бед - один ответ» и т.д.).

В период правления династий Маурьев и Гуптов (IV - II вв. до н.э. - VIII в.н.э), индийскими учеными была создана десятичная система счисления, современное начертание цифр (позже названных в несколько измененном виде арабскими).

Одной из наиболее древних систем счисления является египетская иероглифическая нумерация, возникшая еще за 2500 - 3000 лет до н. э. Это была десятичная непозиционная система счисления, в которой для записи чисел применялся только принцип сложения (числа, выраженные рядом стоящими цифрами, складываются). Специальные знаки имелись для единицы, десяти, ста и других десятичных разрядов до.

С развитием общественно-хозяйственной жизни возникла потребность в создании систем счисления, которые позволяли бы вести счет в более обширных пределах и обозначать все большие совокупности предметов. Для этого человек пользовался окружавшими его предметами, как инструментами счета: он делал зарубки на палках и на деревьях, завязывал узлы на веревках, складывал камешки в кучки и т.п. Такой вид счета носит название унарной системы счисления, т.е. система счисления, в которой для записи числа применяется только один вид знаков. Это удобно, так как сразу визуально определяется количество знаков и сопоставляется с количеством предметов, которые эти знаки обозначают. Все мы ходили в первый класс и считали там, на счетных палочках - это отзвук той далекой эпохи. Кстати, от счета с помощью камешков ведут свое начало различные усовершенствованные инструменты, такие как, например, русские счеты, китайские счеты («сван-пан»), древнеегипетский «абак» (доска, разделенная на полосы, куда клались жетоны). Аналогичные инструменты существовали у многих народов. Более того, в латинском языке понятие «счет» выражается словом «calculatio» (отсюда наше слово «калькуляция»); а происходит оно от слова «calculus», означающего «камешек».

Особо важную роль играл природный инструмент человека - его пальцы. Этот инструмент не мог длительно хранить результат счета, но зато всегда был «под рукой» и отличался большой подвижностью. Язык первобытного человека был беден; жесты возмещали недостаток слов, и числа, для которых еще не было названий, «показывались» на пальцах.

На первых порах расширение запаса чисел происходило медленно. Сначала люди овладели счетом в пределах нескольких десятков и лишь позднее дошли до сотни. У многих народов число 40 долгое время было пределом счета и названием неопределенно большого количества. В русском языке слово «сороконожка» имеет смысл «многоножка»; выражение «сорок сороков» означало в старину число, превосходящее всякое воображение.

На следующей ступени счет достигает нового предела: десяти десятков, и создается название для числа 100. Вместе с тем слово «сто» приобретает смысл неопределенно большого числа. Такой же смысл приобретают потом последовательно числа тысяча, десять тысяч (в старину это число называлось «тьма»), миллион.

На современном этапе границы счета определены термином «бесконечность», который не обозначает, какое либо конкретное число.

2. История возникновения двоичной системы счисления

Системой счисления называется совокупность приемов и правил для наименования и обозначения чисел. Условные знаки, применяемые для обозначения чисел, называются цифрами.

Обычно все системы счисления разбивают на два класса: непозиционные и позиционные.

В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее положения (позиции) в последовательности цифр, изображающих число. Например, в числе 757,7 первая семерка означает означает 7 сотен, вторая -- 7 единиц, а третья -- 7 десятых долей единицы.

Сама же запись числа 757,7 означает сокращенную запись выражения:

В непозиционных системах счисления вес цифры (т.е. тот вклад, который она вносит в значение числа) не зависит от ее позиции в записи числа. Так, в римской системе счисления в числе ХХХII (тридцать два) вес цифры Х в любой позиции равен просто десяти.

Исторически первыми системами счисления были именно непозиционные системы. Одним из основных недостатков является трудность записи больших чисел. Запись больших чисел в таких системах либо очень громоздка, либо алфавит системы чрезвычайно велик. Примером непозиционной системы счисления, достаточно широко применяющейся в настоящее время, может служить так называемая римская нумерация.

Двоичная система счисления, т.е. система с основанием, является «минимальной» системой, в которой полностью реализуется принцип позиционности в цифровой форме записи чисел. В двоичной системе счисления значение каждой цифры «по месту» при переходе от младшего разряда к старшему увеличивается вдвое.

История развития двоичной системы счисления - одна из ярких страниц в истории арифметики. Официальное «рождение» двоичной арифметики связывают с именем Г.В. Лейбница, опубликовавшего статью, в которой были рассмотрены правила выполнения всех арифметических операций над двоичными числами.

Лейбниц, однако, не рекомендовал двоичную арифметику для практических вычислений вместо десятичной системы, но подчеркивал, что "вычисление с помощью двоек, то есть 0 и 1, в вознаграждение его длиннот является для науки основным и порождает новые открытия, которые оказываются полезными впоследствии, даже в практике чисел, а особенно в геометрии: причиной чего служит то обстоятельство, что при сведении чисел к простейшим началам, каковы 0 и 1, всюду выявляется чудесный порядок".

Лейбниц считал двоичную систему простой, удобной и красивой. Он говорил, что «вычисление с помощью двоек... является для науки основным и порождает новые открытия... При сведении чисел к простейшим началам, каковы 0 и 1, везде появляется чудесный порядок».

По просьбе ученого в честь «диадической системы» - так тогда называли двоичную систему - была выбита медаль. На ней изображалась таблица с числами и простейшие действия с ними. По краю медали вилась лента с надписью: «Чтобы вывести из ничтожества все, достаточно единицы».

Потом о двоичной системе забыли. В течение почти 200 лет на эту тему не было издано ни одного труда. Вернулись к ней только в 1931 году, когда были продемонстрированы некоторые возможности практического применения двоичного счисления.

Блестящие предсказания Лейбница сбылись только через два с половиной столетия, когда выдающийся американский ученый, физик и математик Джон фон Нейман предложил использовать именно двоичную систему счисления в качестве универсального способа кодирования информации в электронных компьютерах ("Принципы Джона фон Неймана").

3. Запись числа в двоичной системе

Чем меньше знаков - цифр в одном разряде для записи в двоичной системе, тем больше надо разрядов, чтобы представить данное число. Возьмем, например число 8. В двоичной системе для его представления понадобятся четыре разряда: 1000.

Теперь возьмем другую запись в двоичной системе - 1111. Самая правая, последняя цифра так и будет единицей. Но уже следующая высшего разряда - больше ее только в два раза и означает 2, третья опять в два раза больше - 4, четвертая соответственно - 8.

Попробуем записать какое-нибудь число, допустим 1017, в двоичной системе. Для этого, как и в десятичной системе, раскладываем его на разряды, но разряды здесь выглядят по-иному. Начнем с низшего, с 7. Поскольку в двоичной системе каждый разряд в два раза больше последующего, число 7 запишется суммой трех двоичных разрядов: 7=4+2+ 1 (1 в 2 раза меньше 2; 2 в 2 раза меньше 4). В числе 7 одна четверка, одна двойка, одна единица: 7=4+2+ 1. Эту запись можно сделать по-другому: 1*22+ 1*21 + 1. Следовательно, в каждом из этих разрядов ставим по 1-111.

Затем идет число 10. Оно состоит из одной восьмерки и одной двойки: 10 = 8+2 = 1*23 + 0*22 + 1*21 + 0*20. Заметили, здесь нет разрядов единицы и четверок, поэтому вместо них мы ставим нули и записываем число так: 1010.

Так же можно разложить и все следующие разряды. Тогда все число 1017 запишется как 512 + 256 + 128 + 64 + 32 + 16 + 8 + 1= 1*29 + 1*28 + 1*27 + 1*26 + 1*25 + 1*24 + 1*23 + 0*22 + 0*21 + 1*20 и. Записываем по разрядам и получаем 1 111 111 001.

Основы двоичной системы, столь непривычной из-за традиции оперировать всегда и везде системой десятичной, мы знаем. Двоичной системой пользуются только вычислительные машины. Машина пересчитывает нули и единицы с очень большой скоростью.

Достоинства двоичной системы счисления заключаются в простоте реализации процессов хранения, передачи и обработки информации на компьютере:

1. Для ее реализации нужны элементы с двумя возможными состояниями, а не с десятью.

2. Представление информации посредством только двух состояний надежно и помехоустойчиво.

3. Возможность применения алгебры логики для выполнения логических преобразований.

4. Двоичная арифметика проще десятичной.

Недостатки двоичной системы счисления.

Итак, код числа, записанного в двоичной системе счисления, представляет собой последовательность из 0 и 1. большие числа занимают достаточно большое число разрядов.

Быстрый рост числа разрядов - самый существенный недостаток двоичной системы счисления.

Заключение

двоичный кодирование компьютер

Люди предпочитают десятичную систему, вероятно, потому, что с древних времен считали по пальцам, но применимо к компьютерной технике и ЭВМ двоичная система счисления имеет ряд преимуществ перед другими системами, т.к. для ее реализации нужны технические устройства лишь с двумя устойчивыми состояниями (есть ток -- нет тока, намагничен -- не намагничен и т.п.), а не, например, с десятью, -- как в десятичной; представление информации посредством только двух состояний надежно и помехоустойчиво; возможность применения аппарата булевой алгебры для выполнения логических преобразований информации; двоичная арифметика проще десятичной. Однако, недостаток двоичной системы -- быстрый рост числа разрядов, необходимых для записи чисел.

На сегодняшний день именно двоичная система счисления используется для кодирования и шифрования информации. Из всех существующих систем счисления двоичная система счисления наиболее удобна и применима в компьютерной технике и ЭВМ.

Список использованной литературы

1. Бобынин В.В. «Лекции по истории математики» («Физико-математические Науки», т. IХ и Х, лекции 2--6);

2. Бобынин В.В. «Исследования по истории математики» (вып. II, М., 1896).

3. Выгодский М.Я. Справочник по элементарной математике, М.: Государственное издательство технико-теоретической литературы, 1956.

4. Ролич Ч.Н. - От 2 до 16, Минск, «Высшая школа», 1981 г.

5. Фомин С.В. Системы счисления, М.: Наука, 1987.

Размещено на Allbest.ru

...

Подобные документы

    Факты появления двоичной системы счисления - позиционной системы счисления с основанием 2. Достоинства системы: простота вычислений и организации чисел, возможность сведения всех арифметических действий к одному - сложению. Применение двоичной системы.

    презентация , добавлен 10.12.2014

    Примеры правила перевода чисел с одной системы в другую, правила и особенности выполнения арифметических операций в двоичной системе счисления. Перевод числа с десятичной системы в двоичную систему счисления. Умножение целых чисел в двоичной системе.

    контрольная работа , добавлен 13.02.2009

    Определение информации, ее виды и свойства. Назначение основных блоков компьютера: процессор, память, системная магистраль, внешнее устройство. Архитектура фон Неймана. Характерные черты информации. Принцип использования двоичной системы счисления.

    контрольная работа , добавлен 21.02.2010

    Целые числа в позиционных системах счисления. Недостатки двоичной системы. Разработка алгоритмов, структур данных. Программная реализация алгоритмов перевода в различные системы счисления на языке программирования С. Тестирование программного обеспечения.

    курсовая работа , добавлен 03.01.2015

    Характеристика методов представления заданных чисел в двоичной, шестнадцатеричной, восьмеричной системе счисления. Представление указанного числа в четырехбайтовом IEEE формате. Разработка алгоритма обработки одномерных и двумерных числовых массивов.

    контрольная работа , добавлен 05.06.2010

    Понятие и виды систем счисления, принципы двоичной системы. Формы представления чисел в ЭВМ, виды кодирования информации. Оценка и выбор пакетов прикладных программ: преимущества операционной системы Windows, справочной системы "КонсультантПлюс".

    реферат , добавлен 21.06.2010

    Порождение целых чисел в позиционных системах счисления. Почему мы пользуемся десятичной системой, а компьютеры - двоичной (восьмеричной и шестнадцатеричной)? Перевод чисел из одной системы в другую. Математические действия в различных системах счисления.

    конспект произведения , добавлен 31.05.2009

    Логические элементы как устройства, предназначенные для обработки информации в цифровой форме. Определение основных отличительных особенностей и преимуществ двоичной и троичной систем счисления по сравнению с десятичной системой счисления, их типы.

    реферат , добавлен 20.11.2011

    лабораторная работа , добавлен 31.05.2009

    Числа с фиксированной точкой характеризуются длиной слова в битах, положением двоичной точки, бывают беззнаковыми или знаковыми. Позиция двоичной точки определяет число разрядов в целой и дробной частях машинного слова. Представление отрицательного числа.

Двоичная система

Двоичная система счисления - это позиционная система счисления с основанием 2. В этой системе счисления натуральные числа записываются с помощью всего лишь двух символов (в роли которых обычно выступают цифры 0 и 1).

Двоичная система используется в цифровых устройствах , поскольку является наиболее простой и соответствует требованиям:

  • Чем меньше значений существует в системе, тем проще изготовить отдельные элементы, оперирующие этими значениями. В частности, две цифры двоичной системы счисления могут быть легко представлены многими физическими явлениями: есть ток - нет тока, индукция магнитного поля больше пороговой величины или нет и т. д.
  • Чем меньше количество состояний у элемента, тем выше помехоустойчивость и тем быстрее он может работать. Например, чтобы закодировать три состояния через величину индукции магнитного поля, потребуется ввести два пороговых значения, что не будет способствовать помехоустойчивости и надёжности хранения информации.
  • Двоичная арифметика является довольно простой. Простыми являются таблицы сложения и умножения - основных действий над числами.
  • Возможно применение аппарата алгебры логики для выполнения побитовых операций над числами.

Ссылки

  • Онлайн калькулятор для перевода чисел из одной системы счисления в другую

Wikimedia Foundation . 2010 .

Смотреть что такое "Двоичная система" в других словарях:

    ДВОИЧНАЯ СИСТЕМА, в математике система счисления, имеющая ОСНОВАНИЕ 2 (десятичная система имеет основание 10). Она наиболее пригодна для работы с компьютерами, поскольку отличается простотой и соответствует двум положениям (открытое 0 и закрытое… … Научно-технический энциклопедический словарь

    двоичная система - — Тематики электросвязь, основные понятия EN binary system … Справочник технического переводчика

    двоичная система - dvejetainė sistema statusas T sritis automatika atitikmenys: angl. binary system vok. Binärsystem, n rus. двоичная система, f pranc. système binaire, m … Automatikos terminų žodynas

    двоичная система - dvejetainė sistema statusas T sritis fizika atitikmenys: angl. binary system; dyadic system vok. Binärsystem, n; Dualsystem, n rus. двоичная система, f pranc. système binaire, m … Fizikos terminų žodynas

    Жарг. студ. Шутл. Сильное опьянение. ПБС, 2002 … Большой словарь русских поговорок

    Позиционная система счисления с основанием 2, в которой для записи чисел используются цифры 0 и 1. См. также: Позиционные системы счисления Финансовый словарь Финам … Финансовый словарь

    ДВОИЧНАЯ система СЧИСЛЕНИЯ, способ записи чисел, при котором используются две цифры 0 и 1. Две единицы 1 го разряда (т.е. места, занимаемого в числе) образуют единицу 2 го разряда, две единицы 2 го разряда образуют единицу 3 го разряда и т.д.… … Современная энциклопедия

    Двоичная система счисления - ДВОИЧНАЯ СИСТЕМА СЧИСЛЕНИЯ, способ записи чисел, при котором используются две цифры 0 и 1. Две единицы 1 го разряда (т.е. места, занимаемого в числе) образуют единицу 2 го разряда, две единицы 2 го разряда образуют единицу 3 го разряда и т.д.… … Иллюстрированный энциклопедический словарь

    Двоичная система исчисления - система, использующая для представления буквенно цифровых и иных символов наборы комбинаций цифр 1 и 0, основа используемых в цифровых ЭВМ кодов … Издательский словарь-справочник

    ДВОИЧНАЯ СИСТЕМА СЧИСЛЕНИЯ - позиционная система счисления с основанием 2, в которой имеются две цифры 0 и 1, и их последовательностями записываются все натуральные числа. Напр. цифра 2 записывается как 10, цифра 4 = 22 как 100, число 900 как 11 значное число: 11 110 101 000 … Большая политехническая энциклопедия

Книги

  • Архимедово лето, или История содружества юных математиков. Двоичная система счисления , Бобров С. , Двоичная система счисления, "Ханойская башня", ход коня, магические квадраты, арифметический треугольник, фигурные числа, сочетания, понятие о вероятностях, лента Мебиуса и бутылка… Категория: Обо всем на свете Издатель:

Системой счисления называется совокупность приемов и правил для наименования и обозначения чисел. Условные знаки, применяемые для обозначения чисел, называются цифрами.

Обычно все системы счисления разбивают на два класса: непозиционные и позиционные.

В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее положения (позиции) в последовательности цифр, изображающих число. Например, в числе 757,7 первая семерка означает означает 7 сотен, вторая -- 7 единиц, а третья -- 7 десятых долей единицы.

Сама же запись числа 757,7 означает сокращенную запись выражения:

В непозиционных системах счисления вес цифры (т.е. тот вклад, который она вносит в значение числа) не зависит от ее позиции в записи числа. Так, в римской системе счисления в числе ХХХII (тридцать два) вес цифры Х в любой позиции равен просто десяти.

Исторически первыми системами счисления были именно непозиционные системы. Одним из основных недостатков является трудность записи больших чисел. Запись больших чисел в таких системах либо очень громоздка, либо алфавит системы чрезвычайно велик. Примером непозиционной системы счисления, достаточно широко применяющейся в настоящее время, может служить так называемая римская нумерация.

Двоичная система счисления, т.е. система с основанием, является «минимальной» системой, в которой полностью реализуется принцип позиционности в цифровой форме записи чисел. В двоичной системе счисления значение каждой цифры «по месту» при переходе от младшего разряда к старшему увеличивается вдвое.

История развития двоичной системы счисления - одна из ярких страниц в истории арифметики. Официальное «рождение» двоичной арифметики связывают с именем Г.В. Лейбница, опубликовавшего статью, в которой были рассмотрены правила выполнения всех арифметических операций над двоичными числами.

Лейбниц, однако, не рекомендовал двоичную арифметику для практических вычислений вместо десятичной системы, но подчеркивал, что "вычисление с помощью двоек, то есть 0 и 1, в вознаграждение его длиннот является для науки основным и порождает новые открытия, которые оказываются полезными впоследствии, даже в практике чисел, а особенно в геометрии: причиной чего служит то обстоятельство, что при сведении чисел к простейшим началам, каковы 0 и 1, всюду выявляется чудесный порядок".

Лейбниц считал двоичную систему простой, удобной и красивой. Он говорил, что «вычисление с помощью двоек... является для науки основным и порождает новые открытия... При сведении чисел к простейшим началам, каковы 0 и 1, везде появляется чудесный порядок».

По просьбе ученого в честь «диадической системы» - так тогда называли двоичную систему - была выбита медаль. На ней изображалась таблица с числами и простейшие действия с ними. По краю медали вилась лента с надписью: «Чтобы вывести из ничтожества все, достаточно единицы».

Потом о двоичной системе забыли. В течение почти 200 лет на эту тему не было издано ни одного труда. Вернулись к ней только в 1931 году, когда были продемонстрированы некоторые возможности практического применения двоичного счисления.

Блестящие предсказания Лейбница сбылись только через два с половиной столетия, когда выдающийся американский ученый, физик и математик Джон фон Нейман предложил использовать именно двоичную систему счисления в качестве универсального способа кодирования информации в электронных компьютерах ("Принципы Джона фон Неймана").

Двоичная система счисления сегодня используется практически во всех цифровых устройствах. Компьютеры, контроллеры и другие вычислительные устройства производят вычисления именно в двоичной системе. Цифровые устройства записи и воспроизведения звука, фото и видео хранят и обрабатывают сигналы в двоичной системе счисления. Передача информации по цифровым каналам связи также использует модель двоичной системы счисления.

Система носит такое название, потому что основанием системы является число два (2 ) или в двоичной системе 10 2 - это значит что для изображения чисел используется только две цифры "0" и "1". Двоечка записанная справа внизу от числа, здесь и далее будет обозначать основание системы счисления. Для десятичной системы основание обычно не указывают.

Ноль - 0 ;
Один - 1 ;

А что делать дальше? Все цифры кончились. Как же изобразить число два? В десятичной системе, в подобной ситуации (когда закончились цифры), мы вводили понятие десятка, здесь же мы вынуждены ввести понятие "двойка" и скажем, что два - это одна двойка и ноль единиц. А это уже можно и записать как - "10 2 ".

Итак, Два - 10 2 (одна двойка, ноль единиц)
Три - 11 2 (одна двойка, одна единица)

Четыре - 100 2 (одна четверка, ноль двоек, ноль единиц)
Пять - 101 2 (одна четверка, ноль двоек, одна единица)
Шесть - 110 2 (одна четверка, одна двойка, ноль единиц)
Семь - 111 2 (одна четверка, одна двойка, одна единица)

Возможности трех разрядов исчерпались, вводим более крупную единицу счета - восьмерку (осваиваем новый разряд).

Восемь - 1000 2 (одна восьмерка, ноль четверок, ноль двоек, ноль единиц)
Девять - 1001 2 (одна восьмерка, ноль четверок, ноль двоек, одна единица)
Десять - 1010 2 (одна восьмерка, ноль четверок, одна двойка, ноль единиц)
...
и так далее...
...

Всегда, когда возможности задейсвованых разрядов, для отображения следующего числа, исчерпываются, мы вводим более крупные единицы счета, т.е. задействуем следующий разряд.

Рассмотрим число 1011 2 записанное в двоичной системе счисления. Про него можно сказать, что оно содержит: одну восьмерку, ноль четверок, одну двойку и одну единицу. И получить его значение через входящие в него цифры можно следующим образом.

1011 2 = 1 *8+0 *4+1 *2+1 *1, здесь и далее знак * (звездочка) означает умножение.

Но ряд чисел 8, 4, 2, 1 есть не что иное, как целые степени числа два (основания системы счисления) и поэтому можно записать:

1011 2 = 1 *2 3 +0 *2 2 +2 *2 1 +2 *2 0

Подобным образом для двоичной дроби (дробного числа) например: 0.101 2 (пять восьмых), про него можно сказать, что оно содержит: одну вторую, ноль четвертых и одну восьмую долю. И его значение можно вычислить следующим образом:

0.101 2 = 1 *(1/2) + 0 *(1/4) + 1 *(1/8)

И здесь ряд чисел 1/2; 1/4 и 1/8 есть не что иное, как целые степени числа два и мы также можем записать:

0.101 2 = 1 *2 -1 + 0 *2 -2 + 1 *2 -3

Для смешанного числа 110.101 аналогичным образом можем записать:

110.101 = 1 *2 2 +1 *2 1 +0 *2 0 +1 *2 -1 +0 *2 -2 +1 *2 -3

Давайте пронумеруем разряды целой части двоичного числа, справа налево, как 0,1,2…n (нумерация начинается с нуля!). А разряды дробной части, слева направо, как -1,-2,-3…-m. Тогда значение некоторого двоичного числа может быть вычислено по формуле:

N = d n 2 n +d n-1 2 n-1 +…+d 1 2 1 +d 0 2 0 +d -1 2 -1 +d -2 2 -2 +…+d -(m-1) 2 -(m-1) +d -m 2 -m

Где: n - количество разрядов в целой части числа минус единица;
m - количество разрядов в дробной части числа
d i - цифра стоящая в i -м разряде

Эта формула называется формулой разложения двоичного числа, т.е. числа записанного в двоичной системе счисления. Но если в этой формуле число два заменить на некоторое абстрактное q , то мы получим формулу разложения для числа записанного в q-й системе счисления:

N = d n q n +d n-1 q n-1 +…+d 1 q 1 +d 0 q 0 +d -1 q -1 +d -2 q -2 +…+d -(m-1) q -(m-1) +d -m q -m

С помощью этой формулы вы всегда сможете вычислить значение не только двоичного числа, но и числа записанного в любой другой позиционной системе счислени. О других системах счисления рекомендуем почитать следующие статьи.

План урока

Здесь вы узнаете:

♦ как работает с числами;
♦ что такое электронная таблица;
♦ как решаются вычислительные задачи;
♦ с помощью электронных таблиц;
♦ как можно использовать электронные таблицы для информационного моделирования.

Двоичная система счисления

Основные темы параграфа:

♦ десятичная и двоичная системы счисления;
♦ развернутая форма записи числа;
♦ перевод двоичных чисел в десятичную систему;
♦ перевод десятичных чисел в двоичную систему;
♦ арифметика двоичных чисел.

В данной главе речь пойдет об организации вычислений на компьютере . Вычисления связаны с хранением и обработкой чисел.

Компьютер работает с числами в двоичной системе счисления.

Эта идея принадлежит Джону фон Нейману, сформулировавшему в 1946 году принципы устройства и работы ЭВМ. Выясним, что такое система счисления.

Десятичная и двоичная системы счисления

Системой счисления или в сокращенном варианте СС называют такую систему записи чисел, которая имеет определенный набор цифр.

Об истории различных систем счисления вы узнали, когда изучали 7 главу учебника. А сегодня мы с вами обратим наше внимание на такие системы счисления, как двоичная и десятичная СС.

Как вам уже известно из изученного ранее материала, что одной из наиболее часто применяемых систем счисления является десятичная СС. А называется эта система так потому, что в основе этого словообразования есть число 10. Вот поэтому и система счисления называется десятичной.

Вы уже знаете, что в этой системе используют такие десять цифр, как 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. А вот числу десять отведена исключительная роль, так как на наших руках насчитывается десять пальцев. То есть, десять цифр являются основанием данной системы счисления.

А вот в двоичной системе счисления, задействованные только две цифры, такие, как 0 и 1 и основанием этой системы является число 2.

Теперь давайте попробуем разобраться, как с помощью всего лишь двух цифр представить какую-то величину.

Развернутая форма записи числа

Давайте обратимся к своей памяти и вспомним, какой в десятичной СС существует принцип записи чисел. То есть, для вас уже не будет секретом, что в такой СС запись числа зависит от места расположения цифры, то есть, от ее позиции.

Так, например, цифра, которая является крайней справа, говорит нам о количестве единиц этого числа, следующая за этой цифрой, как правило, указывает на количество двоек и т.д.

Если мы с вами, например, возьмем такое число, как 333, то увидим, что крайняя правая цифра обозначает три единицы, потом три десятка и за ней – три сотни.

Теперь это изобразим в виде такого равенства:

Здесь мы видим равенство, в котором выражение, расположенное с правой стороны от знака равно, предоставлено в виде развернутой формы записи этого многозначного числа.

Рассмотрим еще один пример многозначного десятичного числа, который также представлен в развернутой форме:

Перевод двоичных чисел в десятичную систему

Теперь давайте для примера возьмем такое многозначительное двоичное число, как:

В этом многозначительном числе мы видим с правой стороны внизу двойку, которая нам указывает на основание системы счисления. То есть, нам понятно, что перед нами двоичное число и перепутать его с десятичным, мы уже не можем.

И значение каждой следующей цифры в двоичном числе возрастает в 2 раза при каждом шаге справа налево. Теперь давайте посмотрим, как будет выглядеть развернутая форма записи этого двоичного числа:

На этом примере мы видим, как можно перевести перевели двоичное число в десятичную систему.

Теперь давайте еще приведем несколько примеров перевода двоичных чисел в десятичную систему счисления:

Это пример нам показывает то, что двузначному десятичному числу, в данном случае, соответствует шестизначное двоичное. Для двоичной системы характерно такое возрастание количества цифр при увеличении значения числа.

А теперь давайте посмотрим, как будет выглядеть начало натурального ряда чисел в десятичной (А10) и двоичной (А2) СС:



Перевод десятичных чисел в двоичную систему

Рассмотрев приведенные примеры выше, надеюсь вам теперь понятно, как происходит перевод двоичного числа в равное десятичное число. Ну, а теперь давайте попробуем сделать обратный перевод. Смотрим, что нам для этого необходимо сделать. Нам для такого перевода необходимо попробовать разложить десятичное число на слагаемые, которые представляют собой степени двойки. Приведем такой пример:

Как видим, это сделать не так уж и просто. Давайте попробуем рассмотреть другой, более простой метод перевода из десятичной СС в двоичную. Такой метод состоит в том, что известное десятичное число, как правило, делиться на два, а его полученный остаток и будет выступать младшим разрядом искомого числа. Это, вновь полученное число мы снова делим на два и получаем следующий разряд искомого числа. Такой процесс деления мы будем продолжать до тех пор, пока частное не станет меньше основания двоичной системы, то есть, меньше двойки. Вот такое полученное частное и будет старшей цифрой числа, которое мы искали.

Давайте теперь рассмотрим методы записи деления на число два. Для примера возьмем число 37 и попробуем его перевести в двоичную систему.



На данных примерах мы видим, что а5, а4, а3, а2, а1, а0 являются обозначением цифр в записи двоичного числа, которые осуществляются по порядку слева направо. В итоге мы с вами получим:


Арифметика двоичных чисел

Если исходить из правил в арифметике, то легко заметить, что в двоичной системе счислений, они намного проще, чем в десятичной.

Теперь давайте вспомним варианты сложения и умножения однозначных двоичных чисел.


Благодаря такой простоте, которая легко согласовывается с битовой структурой компьютерной памяти, двоичная система счисления привлекла внимание создателей компьютера.

Обратите внимание на то, как выполняется пример сложения двух многозначных двоичных чисел при помощи столбика:


А вот перед вами пример умножения многозначных двоичных чисел в столбик:


Вы заметили, как легко и просто выполнять такие примеры.

Коротко о главном

Система счисления - определенные правила записи чисел и связанные с этими правилами способы выполнения вычислений.

Основание системы счисления равно количеству используемых в ней цифр.

Двоичные числа - числа в двоичной системе счисления. В их записи используются две цифры: 0 и 1.

Развернутая форма записи двоичного числа - это его представление в виде суммы степеней двойки, умноженных на 0 или на 1.

Использование двоичных чисел в компьютере связано с битовой структурой компьютерной памяти и простотой двоичной арифметики.

Достоинства двоичной системы счисления

А теперь давайте рассмотрим, какими достоинствами обладает двоичная система исчисления:

Во-первых, достоинством двоичной системы счисления является то, что с ее помощью довольно таки просто осуществлять процессы хранения, передачи и обработки информации на компьютере.
Во-вторых, для ее выполнения достаточно не десять элементов, а лишь два;
В-третьих, отображение информации с помощью лишь двух состояний, это надежнее и более устойчиво к различным помехам;
В-четвертых, есть возможность использования алгебры логики для осуществления логических преобразований;
В-пятых, двоичная арифметика все же проще десятичной, поэтому является более удобной.

Недостатки двоичной системы счисления

Двоичная система счисления менее удобна, так как человек привык больше пользоваться десятичной системой, которая намного короче. А вот, в двоичной системе большие числа имеет довольно таки большое число разрядов, что и является ее существенным недостатком.

Почему двоичная система счисления так распространена?

Популярной двоичная система счисления является потому, что это язык вычислительной техники, где каждая цифра должна быть каким-то образом представлена на физическом носителе.

Ведь проще иметь два состояния при изготовлении физического элемента, чем придумывать устройство, в котором должно присутствовать десять различных состояний. Согласитесь, что это было бы намного сложней.

По сути, это и есть одной из основных причин популярности двоичной системы счисления.

История возникновения двоичной системы счисления

История создания двоичной системы счисления в арифметике, довольно таки яркая и стремительная. Основателем этой системы считают известного немецкого ученого и математика Г. В. Лейбница. Им была опубликована статья, в которой он описал правила, по которым можно было выполнить всевозможные арифметические операции над двоичными числами.

К сожалению, до начала двадцатого века двоичная система счисления была малозаметна в прикладной математике. А после того, как начали появляться простые счетные механические приборы, то ученые стали более активно обращать внимание на двоичную систему счисления и начали ее активно изучать, так как для вычислительных устройств она была удобна и незаменима. Она является той минимальной системой, с помощью которой можно полностью реализовать принцип позиционности в цифровой форме записи чисел.

Вопросы и задания

1. Назовите преимущества и недостатки двоичной системы счисления по сравнению с десятичной.
2. Какие двоичные числа соответствуют следующим десятичным числам:
128; 256; 512; 1024?
3. Чему в десятичной системе равны следующие двоичные числа:
1000001; 10000001; 100000001; 1000000001?
4. Переведите в десятичную систему следующие двоичные числа:
101; 11101; 101010; 100011; 10110111011.
5. Переведите в двоичную систему счисления следующие десятичные числа:
2; 7; 17; 68; 315; 765; 2047.
6. Выполните сложение в двоичной системе счисления:
11 + 1; 111 + 1; 1111 + 1; 11111 + 1.
7. Выполните умножение в двоичной системе счисления:
111 · 10; 111 · 11; 1101 · 101; 1101 · 1000.

И. Семакин, Л. Залогова, С. Русаков, Л. Шестакова, Информатика, 9 класс
Отослано читателями из интернет-сайтов